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Abstract— This paper investigates the feasibility of using
EEG-based intention detection for real-time robot assistive
control, with a focus on motor intention prediction. The
proposed approach involves two pipelines: i) an offline pipeline
that collects and processes EEG data as well as motion data to
train a classifier for motion intention prediction and biological
interpretation, and ii) an online pipeline that uses the trained
classifier to predict a human’s motor intention and couples it
with a robot to perform assistive control. We adopt and modify
the state-of-the-art EEG sample covariance matrix feature
representation by using EEG signal derivatives and tangent
space projection as features for an SVM classifier that can
run in real-time. With this, Our system excels with the highest
accuracy of 86.88% in real-time settings, and it achieves an
impressive 70% accuracy in real robot experiments. We show
in a real-robot experiment that our online pipeline is able to
detect the onset of motion purely from EEG signals and trigger
a robot to perform an assistive task.

I. INTRODUCTION

As robots evolve from being mere tools to becoming
intelligent collaborators, the importance of comprehending
and predicting human intentions has taken center stage in the
robotics community. Particularly in scenarios where robots
offer essential physical aid to the elderly or individuals
with disabilities, the prediction of intentions becomes pivotal
in establishing responsive and harmonious interactions that
seamlessly blend human needs with robotic assistance [1].

The term “human intention prediction” encompasses a
robot’s capability to deduce the actions or choices that
a human is likely to undertake. This predictive prowess
empowers robots to dynamically align their behaviors, re-
sponses, and maneuvers in a proactive manner. In this work,
our focus is deliberately narrowed down to motor intention
prediction, as the overarching term “intention” encompasses
a broad spectrum of meanings [2]. Motor intention estimation
specifically refers to forecasting a human’s velocity, location,
or force trajectory within a confined time frame, employing
the principles of state estimation. Moreover, this extends to
foreseeing the states of objects subsequent to a brief period
of human movement. The crux of motor intention prediction
lies in the quest for optimal solutions amid multiple potential
trajectories. To achieve this, constructing a model of the
human sensorimotor system becomes imperative in order
to prune the range of potential outcomes. An approach
to crafting this sensorimotor model lies in the application
of electroencephalography (EEG) to directly decode human
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cognitive processes [3]. EEG captures electrical signals, a
summation of postsynaptic potentials, emitted by numerous
pyramidal cells located within the brain cortex, acting as
dipoles [4].

The viability of EEG for brain-computer interface (BCI)
and brain-machine interfaces (BMI) applications has been
repeatedly demonstrated, given its accessibility and minimal
invasiveness [5]. Conventionally, BCI/BMI encompasses five
stages: i) signal acquisition, ii) preprocessing, iii) feature
extraction, iv) classification, and v) control interface [6]. In
contrast to external sensors or explicit input mechanisms,
EEG measurements can be collected unobtrusively without
interfering with the user’s actions. This aspect gains im-
portance in scenarios prioritizing naturalness, particularly
evident in assistive robotics catering to individuals with
motor impairments. Although EEG might not capture signals
from deep brain structures like the thalamus, it effectively
captures surface information from the frontal lobe and motor
cortex, which are intricately connected to the thalamus for
signal transmission and reception.

Contributions: In this paper, we present an online
pipeline for identifying and utilizing motion-related signals
for robot control and offer an in-depth analysis of the
collected EEG signals. Our approach has three stages:

1) The identification of time window size, frequency, and
classifier through analysis of EEG signals

2) The fitting of a body movement classification model
using calibration data for a specific subject

3) The online application of the classification outcomes
to robot control for executing assistive actions

Paper Organization: After listing related works in Sec-
tion II, we describe our methods in Section III. Then,
in Section IV we introduce our experiments, followed by
showcasing and comparing the results in Section V. Finally,
in Section VI the conclusion and future works are discussed.

II. RELATED WORKS

A. EEG features for classifiers
An accurate way to get the features of brain signals

through EEG is to solve the inverse problem of 3D source
localization [7], which gives the region and its activation
degree. However, this requires a rough model of the hu-
man head using MRI scans or a canonical model. Also,
computation time is too long to be used in an online
manner. Therefore, researchers have sought to identify cer-
tain brain patterns now common in literature, particularly
the Readiness Potential (RP) and Event-Related Desynchro-
nization/Synchronization (ERD/ERS) [8]. To identify these



patterns, raw EEG signals or their frequency obtained from
a fast Fourier transform (FFT) or wavelet transform (WT)
has been used as the EEG feature to train classifiers. Also,
time derivatives have been tested and compared with raw
EEG signals [9], [10]. EEG signals from multiple channels
are known to be spatially related to each other. Therefore,
there have been efforts to use spatial filters [10], graph
structures [11], or sample covariance matrices [12] to capture
the relationship between electrodes.

B. Online motor intention classification using EEG

For human motion tracking and prediction, researchers
have conventionally employed EMG-based techniques [13],
[14], camera-marker-based methods, or a fusion of the two.
These methods excel in detecting precise positional and
force-related information pertaining to different body seg-
ments. Nevertheless, they do not detect the motor intention
from the source, the brain. The utilization of EEG offers
a means to acquire rudimentary insights into movement
through a phenomenon known as cortical potentials, such
as readiness potential (RP) [15], [16]. Debates exist around
whether the onset of cortical potentials invariably indicates
imminent physical action. However, it is generally observed
that potentials occur approximately 500 ms before a volun-
tary motion starts, with a potential occurrence occurring 200
ms before such a motion is deemed inevitable. There have
been efforts to detect RP for robotic control. Nonetheless,
the detection of RP typically necessitates the aggregation
of EEG signals across multiple trials, posing challenges for
real-time single-trial RP detection. Also, well-known noise
and artifact issues in EEG make detection harder.

The surge of deep learning techniques has increased the
accuracy of brain signal classification. Convolutional neural
networks (CNNs) emerged as formidable tools adept at
deciphering nonstationary and nonlinear intricacies within
EEG data [17]. Also, an intriguing fusion of neuromorphic
computing and BCIs emerged, with spiking neural networks
(SNNs) occupying a central role [18]. However, they mainly
work offline, making them hard to use in online control sce-
narios. Therefore, for BCI scenarios, simple classifiers such
as linear discriminant analysis (LDA) [19], Support Vector
Machines (SVMs) [20], [21], fuzzy logic-based classifiers
[22], Gaussian [23] and Bayesian [24] classifiers that can
deal with uncertainty, and shallow neural networks [25], [26],
[27], [28] are more suitable. The fusion of SVMs, Random
Forests, and Artificial Neural Networks by Kucukyildiz et
al. [29] has been used to elevate the average sensitivity.
However, these works are still mostly effective offline.

Racz et al. [30] pioneered online cortical potential clas-
sification, attaining a 62.6% binary classification accuracy.
The accuracy of online cases decreases compared to offline
cases due to the fact that single-trial detection is more
difficult and most blind source artifact removal methods
are hard to use in an online manner to make the signals
cleaner. Our proposed method now establishes the state-of-
the-art standard, achieving an impressive 86.88% in real-time
settings, and 70% accuracy in real robot experiments.

III. METHODS

In this section, the real-time EEG-based intention detec-
tion method is explained. We begin by introducing some
preliminaries, which are the sample covariance matrix and
the SVM classifier. Next, we start introducing the feature
extraction part, followed by offline training and online exe-
cution pipelines.

A. Preliminaries

1) Sample Covariance Matrix: Given a multivariate signal
X ∈ RW×n where n is the number of channels and W is the
size of the window, the sample covariance matrix is defined
as C = Cov(X) = XTX

(n−1) . If W is sufficiently larger than n,
this covariance matrix is a symmetric positive definite (SPD)
matrix, which lies on the Riemannian manifold [31]. The
mean of N points on the manifold of the SPD matrix, µ, is
required as a reference point for tangent space projection, and
it is iteratively computed by the expectation-maximization
method [32] as

u =
1

N

N∑
i=1

Logµ(xi), µ = Expµ(u) (1)

where LogP stands for Riemannian logarithm mapping for
SPD matrix P , projecting a point to the P ’s tangent space,
and ExpP stands for Riemannian exponential mapping for
SPD matrix P , projecting a point on P ’s tangent space back
to the manifold. Both mappings are defined as
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where P ∗ also lies on the SPD matrix manifold and S∗ is
a point on tangent space, which is a symmetric matrix. To
classify biosignals, several works [31] have used the Rieman-
nian manifold to find a mean of data points or covariance
matrices, project all data points to the tangent space of the
mean, and use the upper triangle of the tangent space points
with classic classifiers, s∗ = vec(S∗). This tangent space
vector can be used as a feature for classification.

2) Classifier: The Radial Basis Function Support Vector
Machine (RBF-SVM) is a powerful classification algorithm,
particularly effective for non-linearly separable datasets. In
an RBF SVM, the decision boundary is determined by a
kernel function that maps the data into a higher-dimensional
space, where it can be linearly separated. The RBF kernel
function is defined as:

K(s, si) = exp(−γ · ||s− si||2) (3)

The kernel function measures the similarity between data
point s and support vector si, where γ controls the shape of
the decision boundary. The SVM classifier is defined as:

y = sign

(
M∑
i=1

(αi · yi ·K(s, si)) + b

)
(4)

In this equation, y represents the predicted label, M is the
number of support vectors, αi are Lagrange multipliers,



Fig. 1: Our offline and online pipeline: The upper part is the offline pipeline, which first gathers the raw EEG data and the
corresponding labels, as well as the motion data given by the motion capture system. Then the same feature extraction part
is done, and the output features with labels are used to train the classifier. The motion data is used further for biological
interpretation. The lower part is the online pipeline, which starts from the EEG data stream and extracts the tangent space
projected covariance matrix as features for the classification. Some post-processing follows to ensure the rightness of the
classification results. Finally, the robot moves to the classified object and hands it over to the human.

yi are class labels, K(s, si) is the RBF kernel, and b is
the bias term. This equation computes a weighted sum
of kernel values between input s and support vectors si
using learned weights (αi) to make binary classifications,
effectively mapping features like EEG data to labels.

B. Pipeline

In this section, we will introduce how we get predictions
y ∈ [left, right] from raw EEG signals X ∈ RW×30. Then,
in the experiments section, we close the loop by introducing
how EEG signals X are obtained, and how y is used to
control the robot arm.

1) EEG Feature Extraction: Let us denote a sequence of
raw EEG data consisting of 30 channels, which commences
at time point t and spans a duration of T , as Xt ∈ RW×30. In
order to ensure optimal compatibility with both our classifier
and robot control, we resample the data from its original
sampling rate of 250 Hz to a new rate of 160 Hz.

It is important to note that the amplitude of EEG data
exhibits considerable variability across different subjects and
even within multiple trials of the same subject. To address
this inherent inconsistency in EEG data, we propose a
data processing technique involving signal differentiation,
represented as X̂t = Xt − Xt−1. This approach not only
preserves the tendency of the data that are pertinent to cap-
turing valuable brain signals such as the readiness potential
(RP) and event-related desynchronization/synchronization

(ERD/ERS), but also mitigates undesired disparities between
trials, thus enhancing the generalizability of our findings.
A comparative analysis between our derivative method and
non-derivative approach is presented in Section V.

Following the aforementioned preprocessing procedures,
we employ the sample covariance matrix method, which
has been introduced in Section III-A, to derive the feature
denoted as st ∈ R465 where 465 corresponds to the flattened
upper triangle of the tangent space covariance matrix denoted
as C ∈ R30×30. It is noteworthy that this particular feature
is utilized consistently across all methodologies presented in
this paper; thus, any reference to “feature extraction” in the
subsequent discussions pertains to it.

2) Offline Data Collection Pipeline: In this pipeline, we
align EEG data with OptiTrack data at a frequency of 160 Hz
to generate our data both for training and interpretation. As
shown in Figure 1, our dataset consists of following parts:

DS = {X, y,MT} (5)

The raw EEG signal Xraw has the shape (T, 30). For the
online usage, we apply a time window of size W with step
size 1 to segment it and concatenate the windows together,
resulting in an overlapped windowed data X ∈ RT×W×30,
y ∈ RT is the corresponding label of ‘left’ and ‘right’
for every time step (separated by the auditory cues in our
experiments), and Tmotion ∈ R2×N denotes the onset of
motion time for left and right grasping given by the motion



capture system (N times each).
Once the dataset has been established, the raw EEG data

X undergoes the feature extraction stage, resulting in the
features represented as s ∈ (TL/R, 465). Subsequently, these
extracted features, along with the corresponding labels y,
are utilized to train our Support Vector Machine (SVM)
classifier. For the evaluation phase, a testing dataset is
constructed using a similar procedure. Timing information
is collected by combining the motion time Tmotion with the
cue time y. This fusion of data allows us to assess both
intention detection and motion detection accurately.

3) Online Motion Prediction Pipeline: As for the online
pipeline, we are using the EEG data stream for consistent
SVM classification, so the data size is different from the
training phase. We apply a window of size W and step size s
to achieve real-time performance. At every time step, current
windowed data Xt ∈ RW×30 is collected and goes over the
feature extraction part to get the corresponding feature St ∈
R465. Unlike most offline classification papers, we proposed
two new methods that are used to boost the performance of
real-time robot assistive control.

Regarding the online pipeline, our approach involves the
utilization of the EEG data stream for continuous real-
time SVM classification. In this phase, the data size varies
compared to the training phase. We implement a sliding
window approach with a window size of W and a step size
of s to facilitate real-time processing. At each time step,
the current windowed EEG data Xt ∈ RW×30 is collected
and passed to the feature extraction process, yielding the
corresponding feature vector st ∈ R465 for the classification.

Notably, for real-time robot assistive control, it is impera-
tive to recognize that a direct application of the same pipeline
employed in offline classification may not be suitable. This
is primarily because the offline classification can potentially
yield erratic predictions at some time steps that are unsuitable
for the smooth and efficient control of the robot, although
the total classification accuracy can be high. To deal with
it, in contrast to the majority of offline classification studies,
our work introduces two novel methods designed to enhance
the performance of real-time robot assistive control.

Score Thresholding: During the prediction phase, our
approach does not directly provide the output class but rather
yields a classification score denoted as Pt ∈ R2 for the left
and right classes. These scores are constrained such that they
sum to 1, effectively behaving like probabilities for each
class. The final prediction is made only if one of these class
probabilities surpasses a predefined threshold denoted as δ.
This strategy serves to mitigate the adverse impact of noisy
EEG data on the classification outcome.

Buffer Queuing: Despite the incorporation of score
thresholding, the performance of robot control can still be
occasionally influenced negatively. For instance, in situations
where there are 70 correct predictions and 30 incorrect ones,
the timing may inadvertently lead to one of the incorrect
results being selected for robot control. To enhance the
precision of robot control further, we implement a buffer
queue denoted as BQ with a capacity of q. This queue is

designed to store the most recent q thresholded classification
results and is updated at each time step. When it comes to
the time for the robot to execute a movement, the element
that occurs most frequently in the queue is selected as the
target denoted as x⋆ for the robot’s motion planning.

Motion Planning Once the target for the robot’s end-
effector x∗ is detected, we feed this to a linear controller
ẋ = A(x−x∗) that will drive the robot to the desired target.
Then, if the error is within the threshold, the robot will grasp
the object and move to a defined hand-over position.

IV. EXPERIMENTS

A. Robot experiment setup

We use a Bittium Neurone wet EEG device to get a
stream of brain signals at 250 Hz using the International
10–20 system with 30 electrodes, a KUKA iiwa 7 robot,
and an Optitrack motion tracking system at 100 Hz to check
the onset of motion time for the subject. Because of the
individuality of subjects and the fact that subjects’ states
change over time, we fit the classifier using a few samples
from the subject in the offline pipeline before doing the robot
control. During the offline data collection stage, the subject
is given auditory cues for left or right hand grasping, which
last for 2 seconds. Then, the subject rests for 2 seconds and
repeats that. After 30 random trials of left and right grasping,
we go to online practice, where our robot experiment setup
assumes a robot and a human mirroring each other in a
shared workspace with two objects in front of the human,
as in Figure 1. The subject is given an auditory cue that tells
the subject to move, and the subject moves randomly to the
left or right. The robot, based on the human’s movement to
the left or right grasping, moves in that direction based on
the classification result and gives the object in that direction
to the human, which is not reachable by the human.

B. Classifiers, Features, and Hyperparameters Selection

Based on our pipeline, we first conduct an evaluation of
diverse hyperparameters. These encompass pivotal parame-
ters such as the window size W employed in online data
processing and the selection of distinct frequency bands
for signal filtering. This comprehensive analysis serves the
primary objective of elucidating the intrinsic relationship
between different brain frequency bands and motor move-
ments. Subsequently, based on the optimal hyperparameters,
we proceed to assess the combination of different features
with or without the derivative method, including the raw
signal, conversion to covariance matrix, and projection to
tangent space. At last, we evaluate the accuracies of differ-
ent classifiers, including logistic regression, random forest,
multi-layer perceptron, and support vector machine. Results
of these assessments can be found in Table I, II and III.

C. Motor Movement Dataset Data Processing

We compare the Physio motor movement dataset [33] and
our dataset and check the difference between them. The
motor movement dataset encompasses 109 participants (42
males, 59 females, 8 N/A) employing 64-channel EEG de-
vices at a sampling frequency of 160 Hz and having diverse



Fig. 2: UMAP results of the Motor Movement Dataset for
109 subjects. The left graph shows the mean of ‘rest’, ‘left’,
and ‘right’ for all subjects, and the center graph shows each
individual sample of them. The right graph shows UMAP
results for a single person.

experimental scenarios, including opening and closing the
left or right fist and opening and closing both fists or feet.
Each data instance is categorized as either resting or the
corresponding motor activity concerning the visual cue. We
use runs for three classes from the dataset: ‘resting’, ‘left
fist’, and ‘right fist’. Then, we slice the data between 0.5
and 1.5 seconds after the onset of the cue, which we assume
to be near the subject’s onset of motion time. For our dataset,
the subjects do 15 trials of left and right grasping with the
cue and 15 trials of random direction grasping. Using the
tracking data, we check the onset of motion timing and slice
the data 0.5 seconds before and after the onsets.

V. RESULTS

A. Feature extraction and reduction

To see if the tangent space method extracts meaningful
features, we do the dimension reduction of the feature
and visualize the reduced dimension feature using Uniform
Manifold Approximation and Projection (UMAP) [34] on
the motor movement dataset [33] and our dataset. UMAP
is similar to t-SNE, which is used for visualizing high-
dimensional vectors in 2D or 3D, but it is faster and considers
global relationships such as density better than t-SNE.

When we take the mean covariance of each person’s action
to project all covariance into the tangent space, we can see
that actions for different subjects have different features, as
shown on the left in Figure 2. Also, if we do feature reduction
using individual time-windowed samples, mimicking the
online method, we get noisier results. However, if we look
at a single person’s result, it becomes more distinguishable
than considering all subjects. Therefore, this tells us that
classification has to be done in an individual manner to get
stable results, which can be used for robot control. From our
data, we can see that the covariance matrix and tangent space
vector have features that are more distinguishable than raw
data, as shown in Figure 3.
B. Hyperparameters selection

In this section, we conducted an evaluation of classifi-
cation accuracies, with a particular focus on two hyperpa-
rameters: time window and frequency range. Our chosen
model for this evaluation was the RBF SVM, and the results
are presented in Table I. Our findings indicate that utilizing
a frequency range of 5-15 Hz yielded the most favorable
results, which we presume to be due to the presence of

Fig. 3: UMAP results of our dataset on raw windowed data,
the upper triangle of the covariance matrix, and tangent space
vector.

RP occurring within the 8-13 Hz range[35]. We observed
promising results when extending the time window to 0.5
and 1 second within the 30-40 Hz gamma range, which
aligns with its known association with advanced cognitive
functions. However, it’s important to note that, in our overall
analysis, the 5-15 Hz frequency range consistently provided
the best performance. Our findings emphasize that achieving
the best results hinges on selecting suitable hyperparameters.
In our case, the optimal choice was the 5-15 Hz frequency
range combined with a 2-second time window, resulting
in an impressive accuracy of 86.88%. This highlights the
importance of fine-tuning hyperparameters to optimize EEG
signal analysis.

C. Feature and model selection

In this section, we conduct a comparative analysis of
classification accuracies using various classifiers, including
logistic regression, support vector machine (SVM), and
multi-layer perceptron (MLP), in conjunction with different
feature sets. These feature sets encompass the raw signal data
of windowed 30-electrode signals, the upper triangle of the
covariance matrix, and the tangent space method, all with
and without derivative processing. The detailed results can
be found in Table II and Table III.

Examining the feature selection outcomes presented in
Table II, it becomes evident that incorporating the derivative
processing significantly enhances overall accuracy due to
its ability to mitigate disparities between trails, yielding a
notable increase of 28.96 percentage points, resulting in an
accuracy of 69.10%. When considering feature types, the
tangent space projection method emerges as the most effec-
tive, achieving the highest accuracy at 86.88%. Regarding
the selection of classifiers, as depicted in Table III, we
compute the average of the top 3 accuracies from all 6
feature combinations (as shown in Table II) for each classifier
to gauge their overall performance. We also conduct the
grid search for SVM and MLP, the best result for each
is given by regularization parameter C = 0.1 and kernel
coefficient γ = 0.5 for SVM, and hidden layer size (100, 3)
for MLP. These results indicate that SVM outperforms the
other classifiers with an average accuracy of 69.1%.
D. Biological Interpretation

By aggregating the mean probability (classification score)
generated by the SVM for left and right motions across each
trial and aligning it with the motion timing data obtained
from the motion capture system, we construct the left portion



Frequency Range (Hz)

Time Window (s)

0 - 5 0 - 10 5 - 15 10 - 20 15 - 25 20 - 30 25 - 35 30 - 40 35 - 45
0.03 32.47 43.82 61.80 33.61 16.54 38.18 31.86 19.92 6.75
0.06 44.76 41.65 58.40 26.56 15.34 28.76 18.36 15.92 37.41
0.12 12.24 29.53 69.80 43.34 22.60 10.47 4.44 9.62 19.34
0.25 42.99 45.92 63.82 32.91 6.25 9.40 15.11 34.25 12.57
0.5 15.49 33.22 58.705 7.27 8.63 27.42 34.79 61.51 6.51
1 34.01 39.33 57.91 10.37 28.69 48.15 60.17 80.11 71.27
2 11.36 39.03 86.88 85.13 79.19 73.02 60.29 42.51 39.43

TABLE I: Accuracies of SVM with various frequency ranges and time windows

Without derivative derivative
Feature Raw Covariance Tangent space Raw Covariance Tangent space

Accuracy (%) 32.84 47.27 40.32 64.15 56.26 86.88

TABLE II: Accuracies of SVM with various features

Accuracy (%)
Linear Regressor 63.12

Support Vector Machine 69.10
Multi-Layer Perceptron 45.93

Random Forest 47.47

TABLE III: Averages of the top 3 features accuracies (as
shown in Table II) of different models

Fig. 4: Mean probability confidence for all left and right
trials in black line with respect to the onset of motion and
the readiness potential (RP) in red line with the unit of µV
reproduced from data provided by Wen et al. [36].

of Figure 4. The point labeled ‘0s’ represents the onset of
motion. In this representation, we observe a notable increase
in signal intensity from approximately -0.1s to 0s, followed
by a subsequent decrease from 0s to 0.3s. These observations
can suggest the presence of the readiness potential (RP), as
illustrated in the right portion of the figure.

However, while we detect RP-like behavior, it’s difficult
to detect and disambiguate the onset of motion in a real-
time setting given the current technology and state-of-the-art
approaches that we have. This arises for two main reasons:
the RP signal is very brief, and EEG also detects motion
artifacts. We believe that we are detecting a combination
of RP and motion-related brain signals at 5-15 Hz. This
combined signal can hold potential for robot control as it
encapsulates both preparatory brain activity and the intention
to execute a specific motion.

E. Real robot results

The accuracy between the two different subjects differed
(subject 1: 79.1%, subject 2: 70.8%) but was above 70%
as shown in Figure 5 for 24 trials with random movement
from the subject. Since the signal related to the left and right
movements happened around the onset of motion, which is

Fig. 5: Confusion matrix of robot experiments for two
subjects.

unpredictable, using a queue increased the accuracy of the
classification results.

VI. CONCLUSION AND FUTURE WORK

In this study, we present two pipelines designed to facili-
tate EEG-based real-time robot control. The online pipeline
is first focused on the extraction of features from raw EEG
data for classification. To tackle the noisy signal issue, we
then introduce classification score thresholding and buffer
queuing methods, which enhance signal stability, enabling
control of the robot arm in real-time. The offline pipeline is
responsible for the collection and processing of EEG data
used for training our classifier. Additionally, this pipeline
handles the acquisition of motion data, which is later ana-
lyzed for biological interpretation.

Our experimental results demonstrate the effectiveness of
the tangent space covariance matrix projection method in
extracting robust features that are compatible with multi-
ple classifiers. Among these classifiers, the support vector
machine (SVM) exhibits the highest performance. Further-
more, we conduct a comprehensive evaluation of various
parameters, including time window size, frequency bands,
EEG data features, and classifiers. This analysis allows us to
identify the most effective combination for online classifica-
tion. Leveraging the motion capture system, we investigate
the temporal relationship between motion and classification,
shedding light on the influence of readiness potential and
motor brain signals on the classification outcomes.

In the future, our research direction involves the inte-
gration of additional modalities, such as electromyography
(EMG), with the aim of improving the quality of neural data.
This enhancement may enable us to utilize stable intention
signals for robot control even before the commencement of
physical movements. Furthermore, we aspire to expand our
classification repertoire beyond left and right grasping data,
incorporating more complex movements involving the arms
or legs, thereby broadening the scope of assistive control.
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